Upper and lower I/O bounds for pebbling r-pyramids

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper and Lower I/O Bounds for Pebbling r-Pyramids

Modern computers have several levels of memory hierarchy. To obtain good performance on these processors it is necessary to design algorithms that minimize I/O traffic to slower memories in the hierarchy. In this paper, we present I/O efficient algorithms to pebble r-pyramids and derive lower bounds on the number of I/O steps to do so. The rpyramid graph models financial applications which are ...

متن کامل

Upper and lower bounds for numerical radii of block shifts

For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...

متن کامل

Fractional Pebbling Game Lower Bounds

Fractional pebbling is a generalization of black-white pebbling introduced recently. In this reasearch paper we solve an open problem by proving a tight lower bound on the pebble weight required to fractionally pebble a balanced d-ary tree of height h. This bound has close ties with branching programs and the separation of P from NL.

متن کامل

Upper and lower bounds of symmetric division deg index

Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...

متن کامل

upper and lower bounds for numerical radii of block shifts

for an n-by-n complex matrix a in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of a. in this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Discrete Algorithms

سال: 2012

ISSN: 1570-8667

DOI: 10.1016/j.jda.2011.12.005